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Self-consistent field calculations by the expansion method were carried out for the ground states and
several excited states of atoms and ions of Al and Cu. The results for the total energies of the states computed
represent very accurately the absolute Hartree-Fock solutions. The wave functions were calculated with
the requirement to satisfy identically the cusp condition so that they can be considered to be particularly
accurate in the immediate vicinity of the nucleus. Comparison with experiment is carried out in particular

for the calculated energy levels.

INTRODUCTION

UANTUM-MECHANICAL laws of nature permit

the calculation of all properties of atoms and

molecules from their wave functions. Therefore, the

calculation of such wave functions has become of great

importance. However, approximate methods are neces-
sary for many-particle systems.

An important method which has wide applicability
is the self-consistent field (SCF) method using the
factorization of the total wave function into one-electron
wave functions. This method was originally developed
for atoms by Hartree and Fock using the numerical
integration procedure.! In this paper we shall use the
name Hartree-Fock orbitals for the solutions of the
numerical Hartree-Fock equations. More recently
another method has proved very successful, namely, the
SCF expansion method.2™*

The present paper is the fourth in a series of applica-
tions of this method aimed at obtaining high ac-
curacy.57 The calculations were carried out with a
program written for the IBM 7090 computer.*

THEORETICAL REMARKS

The #-electron wave functions are constructed from
antisymmetrized products, which are built from one-
electron wave functions called orbitals. For closed-shell
configurations one antisymmetrized product is sufficient
to represent the total wave function. For open-shell
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configurations the total wave functions are, in general,
represented by linear combinations of antisymmetrized
products. To a total wave function constructed in this
way, the variational principle is applied and the self-
consistent field equations for the orbitals are obtained.

The orbitals are denoted by ¢na(7,3,¢), where A and
a stand for the symmetry species and subspecies,
respectively, and ¢ distinguishes occupied orbitals of
the same symmetry. Each orbital ¢a. is expanded in
terms of basis functions of the same symmetry. The
expansion then reads

ena=2 XpmaCirp, (1)
V4

where Cy, are coefficients of the expansion. The basis
functions used are given by

XP)\‘!(r)'ﬂ: )=R)\P(r) Y)\ﬂ(ﬂ) ‘P) ) (2)
where Ry, is a normalized Slater-type function
Rop(r)=[(2n2p) 'T2(20np) morthymioie=dar ;. (3)

#ap 1s the principal quantum number, ), is the orbital
exponent, and Y, is the usual normalized spherical
harmonic. One can use other functions for the radial
parts of the basis functions; however, Slater-type
functions are sufficiently flexible and at the same time
computationally manageable, and we see no merit in
using more complicated radial functions.

It is well known that the Hartree-Fock orbitals
satisfy the cusp condition®

(x+1>(l d—ff)mf -7 @)

)‘df

TasLE I. Comparison with other calculations.

Source of
calculation Other This
Quantity authors work
Al, 3s23p,2P;  E[au] —241.8692» —241.8762
Cut, 3d9,1S;  E[au] —1638.7049% —1638.7215
Cu, 3d%4s%,2D; E[au] —1638.9310¢ —1638.9438
Al; th,ap 517d 527
Al; R%p, 32 10.854 6.43
a See Ref, 12, b See Ref. 16. ° See Ref. 18. d See Ref. 15.
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TasLE II. Optimized exponents { of the basis functions for Al*, Al and its excited states.
Atom and
state
Basis\ Al+ Al Al Al Al Al Al Al Al Al Al
function 352,15 3s23p,2P 3s23d,2D 3s%s,2S  3s%4p,2P 3s%4f,:F 3s3p%, 4P 3s3p%,2D 3s3p%, 2P 3s3p2,2S 33, 4S

1s 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000 13.00000
3s 14.81882 14.81832 14.81882 14.81882 14.81882 14.81882 14.81882 14.81882 14.81882 14.81882 14.81882
3s 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967 10.95967
3s 7.03850 7.03975 7.03975 7.03975 7.03850 7.03850 6.84073 6.84073 6.84073 6.84073  6.94000
3s 445427 445008 4.45008 4.45008 4.45427 4.45427 4.34600 4.34600 4.34600 4.34600 4.38000
3s 1.73801  1.74739  1.75275 1.75723 1.73891 1.73891 1.69500 1.72801 1.79372 1.74000 1.80276
3s 124151  1.09143  1.22688  1.22423  1.22988 1.22365 1.13585 1.12451 1.19261  1.13000
3s 0.68000 0.44922 0.67199 0.86184* 0.68566 0.67841 0.47000 0.46000 0.49000 0.47000
4s 0.56059
4s 0.30586
2p 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000 6.50000
4p 15.62221 15.71772 15.62737 15.60893 15.62221 15.62221 15.80000 15.80000 15.80000 15.80000 15.80000
4p 7.01039  7.34587 7.01267 7.00440 7.01039 7.01039 7.38884  7.38884  7.38884  7.38884  7.43962
4p 436248 4.62878 4.36365 4.35712 4.36248 4.36248 4.65954 4.65954 4.65954 4.65954 4.77264
4p 1.70240  2.01378 1.70286 1.70031 2.92882 1.70240 2.04374 199006 1.96055  1.95787  2.27957
4p 1.52000 1.49395 1.57000 1.50000 1.45000 1.44000 1.56017
4y 1.05599 0.96361 1.14302 1.03570 0.97133  0.96276  1.04478
4p 0.50615 0.42256 0.55000 0.50000 0.47000 0.46000 0.53740
4p 0.21400
3d 4.33333
5d 2.78673
5d 1.24807
5d 0.61618
5d 0.39284
5d 0.21000
4f 3.25000
6f 1.50759
6f 0.60985
6f 0.33227

= Corresponds to basis function 4s.

where 7 f5(r) is the radial part of the orbital, and Z is
the nuclear charge. However, if we expand the orbitals
¢aa In terms of known basis functions, they would
generally not satisfy the cusp condition. Nevertheless,
for a special choice” of basis functions the cusp condition
can be identically satisfied, namely, if

a=Z/(\+1),

E,/E} as compared with —2 as a guide for the accuracy
of the results obtained by the expansion method with
respect to the Hartree-Fock solutions.

TasLE III. Optimized exponents ¢ of the basis functions for
Cut, Cu, and its excited states.

Atom and
=\+1 5 state
mu=A+1, (5) Basis Cu* Cu Cu Cu
mp= A3, p>1. function\_ 3410 1S 3d1045,2S  3d04p 2P  3d%s?, 2D
It .is also Yv'ell known Fhat .for the Hartree-Fock éi %gggggg égggggg %gggggg ggggggg
solution the virial theorem is satisfied, namely, 3s 24.96766 ~ 24.96766  24.96766  24.96766
3s 16.50784 16.50784 16.50784 16.2072%
=— 6 3s 11.89243 11.89243 11.89243 11.892

Ep/Bi=—2, ©) 3s 640248 640248 640248 640248
where E, and E; are the potential and kinetic energies, iﬁ 4.12887 %igggz 4.12887 gigg%
respectively. The total energy E is, of course, given by 4s 1.11020 1.17860
2p 14.50000 14.50000 14.50000 14.50000
E=E,+FE,. (7) 4p 3347662 3347662 3347662  33.47662
4p 15.81620 15.81620 15.81620 15.81620
When the orbitals gae are given by Egs. (1)-(3), 4p 10.75110 10.75110 10.75110 10.75110
. : . 4p 6.82655 6.82655 6.82655 6.82655
it can be shown that there exists a common scale factor 4p 4.07204 4.06941 4.07204 4.07204

by which all the orbital exponents can be multiplied so ii’ (1)%(2)(1)(;2
that the virial‘theOYem (6)‘is idgntically satisfied. ' 35 0.66667 9.66667 066667 966667
Clearly the identical satisfaction of the cusp condi- 5d 13.93533  13.88335  13.93533  14.23703
i i i icti is 1 i 5d 7.87939 7.85000 7.87939 8.05000
tl?r}lf lzly mqpomﬁg the restrlclt)xons (5) is mcox?pfatlble > it io%a1a %000 T o2710
wit a justing t. e exponents by a common scale actor 5d 3.63321 3.72000 3.68321 3.91000
to satisfy the virial theorem. In this work we enforce 5d 2.28675 2.18421 2.28675 2.42755

the cusp conditions so that we can use the value of
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SELF-CONSISTENT FIELD FUNCTIONS FOR ATOMS

For an open-shell configuration of an atom, the total
energy E depends upon so-called vector-coupling coeffi-
cients Jyw and K, which characterize the particular
state.*® For all the states treated in this paper J.,=0.

COMPUTATIONAL PROCEDURE

The radial part of an SCF orbital is characterized by
it—A—1 nodes; the i—\ regions separated by the nodes
we call loops. Usually two to three basis functions are
adequate to describe such a loop, if the exponents are
properly adjusted. For a particular orbital we shall call
the loop closest to the origin the first one, and continue
numbering them in outward direction. For two functions
of the same symmetry, the nth loops cover approxi-
mately the same region of r, and can usually be de-
scribed by the same basis functions. In view of these
facts the total number of basis functions necessary is
about two to three times the number of occupied orbitals.

The optimum values of the exponents are, of course,
dependent on the electron occupation, that is, on the
configuration, and to a lesser extent, on the state.
For instance, the optimum exponents for the states of
the configuration 15?25?22 of C are significantly different
from those for the configuration 1s?2s?2p of C*, while
the best exponents for the 3P, 1D, and 1S states of the
first configuration do not differ significantly.

It is, of course, desirable to subject all the exponents
of a basis set to a simultaneous optimization. Such a
procedure, however, would be very time consuming
even for the fastest computers currently available.
Furthermore, it was found that strong ‘‘coupling”
exists only between those basis functions which cover
the same region of 7, and which have also sizeable
expansion coefficients for at least one of the occupied
orbitals. Therefore, it is usually possible to reach
optimization of the basis set by optimizing only two
or three exponents simultaneously.

When the Hartree-Fock energy has been approached
within a few units in the last significant figure of the
computation, further optimization would be meaning-
less because of masking by the round-off error. Further
improvements can be obtained by using additional
basis functions. These additional functions are inserted
one at a time, and are retained if they yield a small
improvement. A final saturation computation is
performed with all those additional functions which
gave a contribution. This procedure works well for
ground states and such excited states where orbitals
have no more nodes than required by orthogonality.

The initial vectors should always describe orbitals
which are reasonable approximations to the orbitals
sought, and in particular they should have the required
number of nodes. Even so, the program we used did not
prevent a highly excited orbital from ‘‘plunging down”
to an orbital with less nodes, and often rather accurate

8 G. L. Malli and C. C. J. Roothaan (to be published).
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TasLE V. Eigenvectors of coefficients Ciyp, for Cu*, Cu,
and its excited states.

\Atom and
state

Basis\ ut Cu Cu Cu
function\ 3dw, 1§ 3d'%4s, 25 3dw04p, 2P 3d%4s?, 2D
1s 1s 1s 1s
1s 0.98283 0.98283 0.98283 0.98282
3s 0.00970 0.00967 0.00970 0.00967
3s 0.01990 0.02000 0.01991 0.02003
3s —0.00517 —0.00537 —0.00518 —0.00539
3s 0.00279 0.00298 0.00279 0.00301
3s —0.00079 —0.00095 —0.00079 —0.00098
3s 0.00025 0.00038 0.00025 0.00040
4s —0.00008 —0.00009
4s 0.00003 0.00003
2s 2s 2s 2s
1s —0.30216 -0.30218 —0.30216 —0.30217
3s —0.00553 —0.00547 —0.00553 —0.00545
3s 0.10201 0.10180 0.10200 0.10171
3s 0.58900 0.58952 0.58900 0.58960
3s 0.38813 0.38758 0.38813 0.38754
3s 0.01014 0.01060 0.01014 0.01071
3s —0.00048 —0.00090 —0.00048 —0.00105
4s 0.00029 0.00032
4s —0.00011 —0.00012
3s 3s 3s 3s
1s 0.11288 0.11302 0.11291 0.11366
3s 0.00259 0.00263 0.00260 0.00311
3s —0.04277 —0.04301 —0.04285 —0.04514
3s —0.23336 —0.23304 —0.23319 —0.22908
3s —0.31494 ~0.31635 —0.31533 —0.32592
3s 0.69371 0.69708 0.69445 0.71432
3s 0.51423 0.51178 0.51367 0.50085
4s —0.00079 —0.00653
4s 0.00129 0.00285
29 2p 2p 2p
2p 0.76443 0.76441 0.76443 0.76430
4p 0.00314 0.00314 0.00315 0.00314
4p 0.20244 0.20248 0.20233 0.20261
4p 0.10609 0.10606 0.10636 0.10607
4p —0.00869 —0.00869 —0.00906 —0.00869
4p 0.00321 0.00319 0.00353 0.00308
4p —0.00047
4p 0.00020
3p 3p 3p 3p
2p —0.28156 —0.28176 —0.28162 —0.28379
4p —0.00035 —0.00034 —0.00037 —0.00049
4p —0.06730 —0.06739 ~—0.06699 —0.06627
4p 0.12789 0.12799 0.12704 0.12407
4p 0.63988 0.64119 0.64163 0.65697
4p 0.36590 0.36458 0.36383 0.34954
4p 0.00370
4p —0.00072
3d 3d 3d 3d
3d 0.19927 0.19852 0.19900 0.20875
5d 0.05283 0.05390 0.05302 0.04744
5d 0.43087 0.43272 0.42980 0.43166
5d 0.44391 0.43276 0.45224 0.47494
5d —0.00859 0.00697 —0.02102 —0.04022
5d 0.19472 0.19726 0.20192 0.16843
4s 4p 4s
1s —0.01960 2p 0.02610 1s —0.02318
3s —0.00095 4p 0.00022 3s —0.00084
3s  0.00963 4p 0.00405 3s . 0.01022
3s  0.03413 4p —0.00685 3s 0.04354
3s 0.06984 4p —0.07911 3s 0.07861
3s —0.16445 4p -—0.00216 3s —0.18875
3s —0.06445 4p 0.38918 3s —0.08744
4s  0.42003 4p 0.72314 4s 0.50926
4s 0.69249 4s 0.61378
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TasLE VI. Comparison of calculated energies
with experimental energies.®

Energies relative to ground state

Atom Calculated Calculated
or total Calcu- Experi- minus
ion State energy lated mental experimental
Al 352, 1S —241.67379 0.20244 0.21972 —0.01728

Al 3s523p, 2P —241.87623 0 0 0
3523d, 2D —241.73174 0.14449  0.14753 ~0.00304
3s%4s, 25 —241.77080  0.10543 0.11524 —0.00981
3s24p, 2P —241.73947 0.13676 0.14991 —0.01315
3s24f, 2F —241.70504 0.17119  0.18801 —0.01682
35392, 4P —241.79037 0.08586 0.13223 —0.04637
35322, 2D —241.69111 0.18512 ce [
3s3p2, 2P —241.60543 0.27080  0.25802b 0.01278b
35392, 2S —241.64455 0.23168  0.23555b —0.00387b
38, 4S —241.52175 0.35448 e oo

Cut  3di0, 1S —1638.7215 0.2347 0.2839 —0.0492

Cu 3d'4s, 2S —1638.9562 c 0 0
3d4p, 2P —1638.8445 0.1117 0.1397 —0.0280
3d%s?, 2D —1638.9438 0.0124 0.0557 —0.0433

a See Ref. 19.

b Experimental energies are not certain.

approximations to the answers sought were necessary
in order to make the run converge.

As an example, let us consider the excited configura-
tion 3s24p of Al. We constructed a trial 4p orbital by

selecting basis functions and expansion coefficients as
follows:

(1) For the first two loops: (a) the same basis func-
tions and ratios of vector components as they were
found for the 3p orbital in the ground state; (b) the
magnitudes of vector components reduced by a factor
of 3 or 4 with respect to those for the 3p orbital.

(2) For the outer loop: only one basis function with
initial exponent 0.25, and expansion coefficient unity.
The initial exponent is taken 0.25 because the outer
loop of the excited 4p orbital is expected to be hydrogen-
like. Further refinement may be obtained by adding one
additional basis function at a time for the outer loop
of such an excited orbital.

RESULTS AND DISCUSSION

The units used are the atomic units of Hartree.
According to Cohen, Crowe, and DuMond,? our atomic
units for length and energy are 0.529172 A and 27.20976
eV, respectively.

Some of the important results are presented in
Tables I-VIII of this article. Some other results are
deposited elsewhere.® The eigenvalues, sometimes
called orbital energies, are denoted by e. The radial

TasrLE VII Orbital energies e.

Al+ Al Al Al Al
32,15 3523p, 2P 3523d, 2D 3s24s, 25 35%4p, 2P
1s —58.81417 —58.50242 —58.69293 —58.66459 —58.69726
2s —5.21853 —4.91139 —5.09697 —5.07045 —5.10301
3s —0.65231 —0.39347 —0.53100 —0.51208 —0.54317
4s —0.09704
2p —3.52340 —3.21890 —3.40194 —3.37481 —3.40840
3p —0.20991
4p —0.06558
3d —0.05797
Al Al Al Al Al Al
3s24f, 2F 3342, 4P 35342, 2D 3342, 2P 3342, 25 348,48
1s —58.75153 —58.53783 —58.57792 —58.62849 —58.60015 —58.62686
2s —5.15591 —4.94320 —4,98043 —5.02798 —5.00161 —5.02400
3s —0.58970 —0.51928 —0.47296 —0.40245 —0.48656
2p —3.46078 —3.25808 —3.28483 —3.34103 —3.31582 —3.34678
3p —0.25995 —0.20142 —0.18182 —0.16129 —0.25250
af —0.03124
Cu* Cu Cu Cu
3419, 15 3dids, 2S5 3d94p, 2P 3d4s2, 2D
1s —329.10962 —328.79186 —328.88714 —329.03747
2s —41.12940 —40.81754 —40.90846 . —41,08758
3s —5.32560 —5.00999 —5.10331 —5.26250
4s —0.23774 —0.28499
2p —35.92971 —35.61628 —35.70865 —35.88168
3p —3.64229 —3.32286 —3.41975 —3.55875
4y —0.12302
3d —0.81002 —0.48885 —0.58692 —0.74196

® E. R. Cohen, K. M. Crowe, J. W. M. DuMond, Fundamental Constants of Physics (Interscience Publishers, Inc., New York, 1957).

10 Tables IX-XIIT and Figs. 1-5 are deposited as Document No. 7583 with the American Documentation Institute, Auxiliary
Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. These tables and figures contain some
numerical tabulations and graphs of the orbital wave functions.
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part of the orbital ppa(7,9,¢) multiplied by 7 is denoted
by Pa(r). For each orbital of the states computed, the
cusp condition is exactly satisfied so that it is not
necessary to present the cusp values in the tables. In
the numerical tabulations!® of the orbital wave functions
only representative cases are included, although such
tables were computed for all the states considered in
this work.

As to the accuracy of the results, it is believed that
the values computed represent the Hartree-Fock values
to six significant figures for total energies, and to three
decimal places for the radial functions Pa (7).

We compared our results with other SCF calculations
wherever possible; the comparisons are summarized
in Table I.

The ground state of Al* was calculated by Biermann
and Harting!” using a numerical procedure. Their
orbitals disagree with ours in the second decimal place.
Clearly, their numerical scheme must have been quite
different from the customary Hartree-Fock method.

Analytic (i.e., expansion method) Hartree-Fock wave
functions for the ground state of Al were calculated by
Watson and Freeman.'? These authors used approxima-
tions based upon the methods of Nesbet!® for treating
open shells.

Some excited orbitals and the 3p orbital of Al were
calculated by Biermann,'* and Biermann and Liibeck,
who used a numerical procedure. Comparing the
tabulation, e.g., for 3p, 4s, and 3d, presented by these
authors'® with ours, considerable differences were found.
The squares of some transition integrals

R;}\,j,‘=/w Pao(r) r Py(r)dr, 9)

also yielded considerable discrepancies (see Table I).
Analytic Hartree-Fock functions for the ground
state of Cut were computed by Watson.!'®* We recal-
culated Watson’s results with our program, so that we
obtained numerically tabulated functions to compare
with ours. Generally, the orbitals agreed to about three

117, Biermann and H. Harting, Z. Astrophys. 22, 81 (1943).

2R, E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).

1B R, K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);
and subsequent articles.

4 T,. Biermann, Nachr. Akad. Wiss. Géttingen, Math. Physik.
Kl. IIa, H.2, 116 (1946).

16 T,, Biermann and K. Liibeck, Z. Astrophys. 25, 325 (1948).

16 For review and further reference see R. E. Watson, Phys.
Rev. 118, 1036 (1960).

1577

TaBLe VIIL. Virial theorem. (Values of E,/Ey.)

Atom
or ion State E,/Ex
Alr 3s2, 1S —2.0001377
Al 323p, 2P —2.0001188
3s23d, 2D —2.0001375
3s%4s, 2S5 —2.0001351
3%4p, 2P —2.0000817
35?4 f, 2F —2.0001363
3532, 4P —2.0001314
3532, 2D —2.0001323
3s3p% 2P —2,0001212
3532, 2S —2.0001282
3%, 15 —2.0000611
Cu* 3dw, 1§ —2.0000744
Cu 3d%4s, 28 —2.0000667
3d%4p, 2P —2.0000763
3d%4s?, 2D —2.0000719

decimal places, except for the 34 orbitals, which agreed
to about two decimal places.

Numerical Hartree-Fock procedure for Cut was
carried out by Piper.'” His orbitals agree to about three
decimal places with the orbitals of this work.

Analytic Hartree-Fock functions for the excited state
3d%s?, 2D of Cu were calculated by Watson.!® The
author used approximation by Nesbet!® for treating
open shells.

Finally, our computed energies are compared with
experimental energies in Table VI. Since total experi-
mental energies are not available, we have compared
energy differences between excited states and ground
states. Since we neglected spin-orbit interaction in the
calculations, we averaged the experimental energies as
obtained from Moore’s tables’® over the multiplet
components.

ACKNOWLEDGMENTS

The author expresses his indebtedness to Professor
C. C. J. Roothaan, who sponsored this research, for
many stimulating suggestions and discussions.

The author also appreciates the cooperation of the
staff of the Laboratory of Molecular Structure and
Spectra, and the personnel of the IBM 7090 computing
facilities at Wright-Patterson Air Force Base.

17W. W. Piper, Phys. Rev. 123, 1281 (1961).

18 R, E. Watson, Phys. Rev. 119, 1934 (1960).

¥ C. E. Moore, U. S. Nat. Bur. Std. Circular No. 467 (U. S.
Government Prmtmg Office, Washington, D. C., 1949).



