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Accurate Analytical Self-Consistent Field Functions for Atoms. IV. Ground States 
and Several Excited States for Atoms and Ions of Al and Cuf J 

MlROSLAV SYNEK* 

Laboratory of Molecular Structure and Spectra, Department of Physics, University of Chicago, Chicago, Illinois 
(Received 4 April 1963) 

Self-consistent field calculations by the expansion method were carried out for the ground states and 
several excited states of atoms and ions of Al and Cu. The results for the total energies of the states computed 
represent very accurately the absolute Hartree-Fock solutions. The wave functions were calculated with 
the requirement to satisfy identically the cusp condition so that they can be considered to be particularly 
accurate in the immediate vicinity of the nucleus. Comparison with experiment is carried out in particular 
for the calculated energy levels. 

INTRODUCTION 

QUANTUM-MECHANICAL laws of nature permit 
the calculation of all properties of atoms and 

molecules from their wave functions. Therefore, the 
calculation of such wave functions has become of great 
importance. However, approximate methods are neces
sary for many-particle systems. 

An important method which has wide applicability 
is the self-consistent field (SCF) method using the 
factorization of the total wave function into one-electron 
wave functions. This method was originally developed 
for atoms by Hartree and Fock using the numerical 
integration procedure.1 In this paper we shall use the 
name Hartree-Fock orbitals for the solutions of the 
numerical Hartree-Fock equations. More recently 
another method has proved very successful, namely, the 
SCF expansion method.2-4 

The present paper is the fourth in a series of applica
tions of this method aimed at obtaining high ac
curacy.5-7 The calculations were carried out with a 
program written for the IBM 7090 computer.4 

THEORETICAL REMARKS 

The ^-electron wave functions are constructed from 
antisymmetrized products, which are built from one-
electron wave functions called orbitals. For closed-shell 
configurations one antisymmetrized product is sufficient 
to represent the total wave function. For open-shell 
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configurations the total wave functions are, in general, 
represented by linear combinations of antisymmetrized 
products. To a total wave function constructed in this 
way, the variational principle is applied and the self-
consistent field equations for the orbitals are obtained. 

The orbitals are denoted by <Pi\a(r,#,(p), where X and 
a stand for the symmetry species and subspecies, 
respectively, and i distinguishes occupied orbitals of 
the same symmetry. Each orbital <pi\a is expanded in 
terms of basis functions of the same symmetry. The 
expansion then reads 

<Pi\az 

P 
(1) 

where d\p are coefficients of the expansion. The basis 
functions used are given by 

xMr,*,<p) = &p(r)Yia@,<p), (2) 

where R\p is a normalized Slater-type function 

*x,(r) = [(2»Xp) !]"1/2(2fxp)^iH-V»^16rfxp»"; (3) 

n\p is the principal quantum number, ftp is the orbital 
exponent, and Y\a is the usual normalized spherical 
harmonic. One can use other functions for the radial 
parts of the basis functions; however, Slater-type 
functions are sufficiently flexible and at the same time 
computationally manageable, and we see no merit in 
using more complicated radial functions. 

I t is well known that the Hartree-Fock orbitals 
satisfy the cusp condition5 

v - ' ~ (4) (X+i)( - ) = - Z ; 
Vx dr/r=o 

TABLE I. Comparison with other calculations. 

\Source of 
\calculation 

Quant i ty \ 

Al, 3s23p, 2 P; 
Cu+ 3d10, *S; 
Cu,3dHs*,W; 

Al; 
Al; 

a See Ref. 12. 

JS[au] 
£ [ a u ] 
£ [ a u ] 
R2i8, Zp 

Rhp, 3d 

»> See Ref. 16. 

Other 
authors 

- 241.8692* 
-1638.7049b 

-1638.9310° 
5.17* 

10.85d 

"See Ref. 18. 

This 
work 

-241.8762 
-1638.7215 
-1638.9438 

5.27 
6.43 

d See Ref. 15. 
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TABLE II. Optimized exponents f of the basis functions for Al+, Al and its excited states. 

\ A t o m and 
\state 

Basis\ 
function\ 

A1+ 
3s*, 15 

Al Al 
3s23p,2P 3s23d,2D 

Al Al Al 
3s24s, *S 3s24p,2P 3s24f,*F 

Al Al Al Al 
3s3p*,*P 3s3p\2D 3s3p2,2P 3s3p2,*S 

Al 
3p\ *S 

Is 
3s 
3s 
3s 
3s 
3J 
3s 
3s 
4.? 
As 
2p 
4p 
4p 
4p 
4p 
4p 
4p 
4p 
4p 
3d 
5d 
Sd 
5d 
5d 
Sd 
4/ 
6/ 
6/ 
6/ 

13.00000 
14.81882 
10.95967 
7.03850 
4.45427 
1.73891 
1.24151 
0.68000 

6.50000 
15.62221 
7.01039 
4.36248 
1.70240 

13.00000 
14.81882 
10.95967 
7.03975 
4.45008 
1.74739 
1.09143 
0.44922 

6.50000 
15.71772 
7.34587 
4.62878 
2.01378 
1.52000 
1.05599 
0.50615 

13.00000 
14.81882 
10.95967 
7.03975 
4.45008 
1.75275 
1.22688 
0.67199 

6.50000 
15.62737 
7.01267 
4.36365 
1.70286 

4.33333 
2.78673 
1.24807 
0.61618 
0.39284 
0.21000 

13.00000 
14.81882 
10.95967 
7.03975 
4.45008 
1.75723 
1.22423 
0.86184a 

0.56059 
0.30586 
6.50000 
15.60893 
7.00440 
4.35712 
1.70031 

13.00000 
14.81882 
10.95967 
7.03850 
4.45427 
1.73891 
1.22988 
0.68566 

6.50000 
15.62221 
7.01039 
4.36248 
2.92882 
1.49395 
0.96361 
0.42256 
0.21400 

13.00000 
14.81882 
10.95967 
7.03850 
4.45427 
1.73891 
1.22365 
0.67841 

6.50000 
15.62221 
7.01039 
4.36248 
1.70240 

3.25000 
1.50759 
0.60985 
0.33227 

13.00000 
14.81882 
10.95967 
6.84073 
4.34600 
1.69500 
1.13585 
0.47000 

6.50000 
15.80000 
7.38884 
4.65954 
2.04374 
1.57000 
1.14302 
0.55000 

13.00000 
14.81882 
10.95967 
6.84073 
4.34600 
1.72801 
1.12451 
0.46000 

6.50000 
15.80000 
7.38884 
4.65954 
1.99006 
1.50000 
1.03570 
0.50000 

13.00000 
14.81882 
10.95967 
6.84073 
4.34600 
1.79372 
1.19261 
0.49000 

6.50000 
15.80000 
7.38884 
4.65954 
1.96055 
1.45000 
0.97133 
0.47000 

13.00000 
14.81882 
10.95967 
6.84073 
4.3460O 
1.74000 
1.13000 
0.47000 

6.50000 
15.80000 
7.38884 
4.65954 
1.95787 
1.44000 
0.96276 
0.46000 

13.00000 
14.81882 
10.95967 
6.94000 
4.38000 
1.80276 

6.50000 
15.80000 
7.43962 
4.77264 
2.27957 
1.56017 
1.04478 
0.53740 

1 Corresponds to basis function 4s. 

where rx/\W is the radial part of the orbital, and Z is 
the nuclear charge. However, if we expand the orbitals 
<Pi\a in terms of known basis functions, they would 
generally not satisfy the cusp condition. Nevertheless, 
for a special choice7 of basis functions the cusp condition 
can be identically satisfied, namely, if 

fxi=Z/(X+l), 

# \ i=X+l , 

n\p^\+3, p>l. 
(5) 

It is also well known that for the Hartree-Fock 
solution the virial theorem is satisfied, namely, 

Ep/Ek—— 2 , (6) 

where Ep and Ek are the potential and kinetic energies, 
respectively. The total energy E is, of course, given by 

E=EP+Ek (7) 

When the orbitals <pi\a are given by Eqs. (l)-(3), 
it can be shown that there exists a common scale factor 
by which all the orbital exponents can be multiplied so 
that the virial theorem (6) is identically satisfied. 

Clearly the identical satisfaction of the cusp condi
tions by imposing the restrictions (5) is incompatible 
with adjusting the exponents by a common scale factor 
to satisfy the virial theorem. In this work we enforce 
the cusp conditions so that we can use the value of 

Ep/Ek as compared with — 2 as a guide for the accuracy 
of the results obtained by the expansion method with 
respect to the Hartree-Fock solutions. 

TABLE III . Optimized exponents f of the basis functions for 
Cu+, Cu, and its excited states. 

\ A t o m and 
\state 

Basis\ 
function\ 

Is 
3s 
3s 
3s 
3s 
3s 
3s 
4s 
4s 
2p 
4p 
4p 
4p 
4p 
4p 
4p 
4p 
3d 
Sd 
Sd 
5d 
Sd 
Sd 

Cu+ 
3d10,15 

29.00000 
35.96083 
24.96766 
16.50784 
11.89243 
6.40248 
4.12887 

14.50000 
33.47662 
15.81620 
10.75110 
6.82655 
4.07204 

9.66667 
13.93533 
7.87939 
4.28000 
3.68321 
2.28675 

Cu 
3d104s, 2S 

29.00000 
35.96083 
24.96766 
16.50784 
11.89243 
6.40248 
4.12887 
2.10931 
1.11020 
14.50000 
33.47662 
15.81620 
10.75110 
6.82655 
4.06941 

9.66667 
13.88335 
7.85000 
4.25312 
3.72000 
2.18421 

Cu 
3d104p, 2P 

29.00000 
35.96083 
24.96766 
16.50784 
11.89243 
6.40248 
4.12887 

14.50000 
33.47662 
15.81620 
10.75110 
6.82655 
4.07204 
1.42000 
0.70134 
9.66667 
13.93533 
7.87939 
4.28000 
3.68321 
2.28675 

Cu 
3<P4s», 2 D 

29.00000 
35.96083 
24.96766 
16.50784 
11.89243 
6.40248 
4.12887 
2.19823 
1.17860 
14.50000 
33.47662 
15.81620 
10.75110 
6.82655 
4.07204 

9.66667 
14.23703 
8.05000 
4.42710 
3.91000 
2.42755 
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For an open-shell configuration of an atom, the total 
energy E depends upon so-called vector-coupling coeffi
cients JxMV and K\nV which characterize the particular 
state.4,8 For all the states treated in this paper 7x^=0 . 

COMPUTATIONAL PROCEDURE 

The radial part of an SCF orbital is characterized by 
i—X—-1 nodes; the i—X regions separated by the nodes 
we call loops. Usually two to three basis functions are 
adequate to describe such a loop, if the exponents are 
properly adjusted. For a particular orbital we shall call 
the loop closest to the origin the first one, and continue 
numbering them in outward direction. For two functions 
of the same symmetry, the nth loops cover approxi
mately the same region of r, and can usually be de
scribed by the same basis functions. In view of these 
facts the total number of basis functions necessary is 
about two to three times the number of occupied orbitals. 

The optimum values of the exponents are, of course, 
dependent on the electron occupation, that is, on the 
configuration, and to a lesser extent, on the state. 
For instance, the optimum exponents for the states of 
the configuration \s22s22p2 of C are significantly different 
from those for the configuration ls22s22p of C+, while 
the best exponents for the 3P, ID, and lS states of the 
first configuration do not differ significantly. 

I t is, of course, desirable to subject all the exponents 
of a basis set to a simultaneous optimization. Such a 
procedure, however, would be very time consuming 
even for the fastest computers currently available. 
Furthermore, it was found that strong "coupling" 
exists only between those basis functions which cover 
the same region of r, and which have also sizeable 
expansion coefficients for at least one of the occupied 
orbitals. Therefore, it is usually possible to reach 
optimization of the basis set by optimizing only two 
or three exponents simultaneously. 

When the Hartree-Fock energy has been approached 
within a few units in the last significant figure of the 
computation, further optimization would be meaning
less because of masking by the round-off error. Further 
improvements can be obtained by using additional 
basis functions. These additional functions are inserted 
one at a time, and are retained if they yield a small 
improvement. A final saturation computation is 
performed with all those additional functions which 
gave a contribution. This procedure works well for 
ground states and such excited states where orbitals 
have no more nodes than required by orthogonality. 

The initial vectors should always describe orbitals 
which are reasonable approximations to the orbitals 
sought, and in particular they should have the required 
number of nodes. Even so, the program we used did not 
prevent a highly excited orbital from "plunging down" 
to an orbital with less nodes, and often rather accurate 

TABLE V. Eigenvectors of coefficients CaP for Cu+, Cu, 
and its excited states. 

8 G. L. Malli and C. C. J. Roothaan (to be published). 

\Atom and 
\state 

Basis\ 
function\ 

Is 
3s 
3s 
3s 
3s 
3s 
3s 
4s 
4s 

Is 
3s 
3s 
3s 
3s 
3s 
3s 
4s 
4s 

Is 
3s 
3s 
3s 
3s 
3s 
3s 
4s 
4s 

2p 
4p 
4p 
4p 
4p 
4p 
4p 
4p 

2P 
4p 
4p 
4P 

4p 
4p 
4p 
4p 

3d 
5d 
5d 
3d 
Sd 
5d 

Cu+ 

Is 

0.98283 
0.00970 
0.01990 

-0.00517 
0.00279 

-0.00079 
0.00025 

2s 

-0.30216 
-0.00553 
0.10201 
0.58900 
0.38813 
0.01014 

-0.00048 

35 

0.11288 
0.00259 

-0.04277 
-0.23336 
-0.31494 
0.69371 
0.51423 

IP 

0.76443 
0.00314 
0.20244 
0.10609 

-0.00869 
0.00321 

3p 

-0.28156 
-0.00035 
-0.06730 
0.12789 
0.63988 
0.36590 

3d 

0.19927 
0.05283 
0.43087 
0.44391 

-0.00859 
0.19472 

Cu 
3dms, 25 

Is 

0.98283 
0.00967 
0.02000 

-0.00537 
0.00298 

-0.00095 
0.00038 

-0.00008 
0.00003 

25 

-0.30218 
-0.00547 
0.10180 
0.58952 
0.38758 
0.01060 

-0.00090 
0.00029 

-0.00011 

3s 

0.11302 
0.00263 

-0.04301 
-0.23304 
-0.31635 
0.69708 
0.51178 

-0.00079 
0.00129 

IP 

0.76441 
0.00314 
0.20248 
0.10606 

-0.00869 
0.00319 

3£ 
-0.28176 
-0.00034 
-0.06739 
0.12799 
0.64119 
0.36458 

3d 

0.19852 
0.05390 
0.43272 
0.43276 
0.00697 
0.19726 

45 

15 -0.01960 
3s -0.00095 
3s 0.00963 
3s 0.03413 
3s 0.06984 
35 -0.16445 
3s -0.06445 
45 0.42003 
45 0.69249 

IP 
4p 
4p 
4p 
4p 
4p 
4p 
4P 

Cu 
3d™4p, *P 

Is 

0.98283 
0.00970 
0.01991 

-0.00518 
0.00279 

-0.00079 
0.00025 

25 

-0.30216 
-0.00553 
0.10200 
0.58900 
0.38813 
0.01014 

-0.00048 

3s 

0.11291 
0.00260 

-0.04285 
-0.23319 
-0.31533 
0.69445 
0.51367 

IP 

0.76443 
0.00315 
0.20233 
0.10636 

-0.00906 
0.00353 

-0.00047 
0.00020 

3p 
-0.28162 
-0.00037 
-0.06699 
0.12704 
0.64163 
0.36383 
0.00370 

-0.00072 

3d 

0.19900 
0.05302 
0.42980 
0.45224 

-0.02102 
0.20192 

4p 

0,02610 
0.00022 
0.00405 

-0.00685 
-0.07911 
-0.00216 
0.38918 
0.72314 

Cu 
3dHs\ W 

\s 

0.98282 
0.00967 
0.02003 

-0.00539 
0.00301 

-0.00098 
0.00040 

-0.00009 
0.00003 

25 

-0.30217 
-0.00545 
0.10171 
0.58960 
0.38754 
0.01071 

-0.00105 
0.00032 

-0.00012 

35 

0.11366 
0.00311 

-0.04514 
-0.22908 
-0.32592 
0.71432 
0.50085 

-0.00653 
0.00285 

2P 
0.76430 
0.00314 
0.20261 
0.10607 

-0.00869 
0.00308 

SP 

-0.28379 
-0.00049 
-0.06627 
0.12407 
0.65697 
0.34954 

3d 

0.20875 
0.04744 
0.43166 
0.47494 

-0.04022 
0.16843 

45 

15 -0.02318 
3s -0.00084 
3s 0.01022 
3s 0.04354 
35 0.07861 
35 -0.18875 
35 -0.08744 
45 0.50926 
45 0.61378 
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TABLE VI. Comparison of calculated energies 
with experimental energies.* 

Atom 
or 
ion S ta te 

Calculated 
to ta l 

energy 

Energies relative to ground s ta te 
Calculated 

Calcu- Experi- minus 
la ted menta l experimental 

Al + 

Al 

C u + 

Cu 

3*2, 15 

3s^3p, *P 
3s*3d, W 
3sHs, *S 
3sHp, 2P 
3524/, 2F 
3s3p\ 4P 
3s3p<i, 2£> 
3s3p\ *P 
3s3p*, 25 
3p\ *S 

3d™, lS 

3dms, 25 
3dlHp, 2P 
3dHs*, W 

-241 .67379 

-241 .87623 
-241 .73174 
-241 .77080 
-241 .73947 
-241 .70504 
-241 .79037 
-241 .69111 
-241 .60543 
-241 .64455 
-241 .52175 

-1638 .7215 

-1638.9562 
-1638 .8445 
-1638 .9438 

0.20244 

0 
0.14449 
0.10543 
0.13676 
0.17119 
0.08586 
0.18512 
0.27080 
0.23168 
0.35448 

0.2347 

0 
0.1117 
0.0124 

0.21972 

0 
0.14753 
0.11524 
0.14991 
0.18801 
0.13223 

0.25802b 
0.23555b 

0.2839 

0 
0.1397 
0.0557 

- 0 . 0 1 7 2 8 

0 
- 0 . 0 0 3 0 4 
- 0 . 0 0 9 8 1 
-0 .01315 
-0 .01682 
-0 .04637 

0.01278b 
-0 .00387b 

- 0 . 0 4 9 2 

0 
- 0 . 0 2 8 0 
- 0 . 0 4 3 3 

* See Ref. 19. 
5 Exper imenta l energies are not cer tain. 

approximations to the answers sought were necessary 
in order to make the run converge. 

As an example, let us consider the excited configura
tion 3sHp of Al. We constructed a trial \p orbital by 

selecting basis functions and expansion coefficients as 
follows: 

(1) For the first two loops: (a) the same basis func
tions and ratios of vector components as they were 
found for the 3p orbital in the ground state; (b) the 
magnitudes of vector components reduced by a factor 
of 3 or 4 with respect to those for the 3p orbital. 

(2) For the outer loop: only one basis function with 
initial exponent 0.25, and expansion coefficient unity. 
The initial exponent is taken 0.25 because the outer 
loop of the excited 4p orbital is expected to be hydrogen
like. Further refinement may be obtained by adding one 
additional basis function at a time for the outer loop 
of such an excited orbital. 

RESULTS AND DISCUSSION 

The units used are the atomic units of Hartree.1 

According to Cohen, Crowe, and DuMond,9 our atomic 
units for length and energy are 0.529172 A and 27.20976 
eV, respectively. 

Some of the important results are presented in 
Tables I-VIII of this article. Some other results are 
deposited elsewhere.10 The eigenvalues, sometimes 
called orbital energies, are denoted by €. The radial 

TABLE VII. Orbital energies e. 

1* 
2s 
3s 
4s 
2p 
3P 
4p 
3d 

Is 
2s 
3s 
2p 
3P 
4 / 

Is 
2s 
3s 
4s 
2p 
3P 
4p 
3d 

A1+ 
3s2, 15 

-58.81417 
-5.21853 
-0.65231 

-3.52340 

Al 
3s24f}

 2F 

-58.75153 
-5.15591 
-0.58970 
-3.46078 

-0.03124 

Cu+ 
3d10,15 

-329.10962 
-41.12940 

-5.32560 

-35.92971 
-3.64229 

-0.81002 

Al 
3s23p, 2P 

-58.50242 
-4.91139 
-0.39347 

-3.21890 
-0.20991 

Al 
3s3p2,4P 

-58.53783 
-4.94320 
-0.51928 
-3.25808 
-0.25995 

Cu 
3d™4s, 2S 

-328.79186 
-40.81754 

-5.00999 
-0.23774 

-35.61628 
-3.32286 

-0.48885 

Al 
3s23d, 2D 

-58.69293 
-5.09697 
-0.53100 

-3.40194 

-0.05797 

Al 
3s3p2,2D 

-58.57792 
-4.98043 
-0.47296 
-3.28483 
-0.20142 

Cu 
3d™4p, 2P 

-328.88714 
-40.90846 

-5.10331 

-35.70865 
-3.41975 
-0.12302 
-0.58692 

Al 
3s24s}

 2S 

-58.66459 
-5.07045 
-0.51208 
-0.09704 
-3.37481 

Al 
3s3p2, 2P 

-58.62849 
-5.02798 
-0.40245 
-3.34103 
-0.18182 

Cu 
3d»4s2,2D 

-329 ml 41 
. -41.08758 

-5.26250 
-0.28499 

-35.88168 
-3.55875 

-0.74196 

Al 
3s24p, 2P 

-58.69726 
-5.10301 
-0.54317 

-3.40840 

-0.06558 

Al 
3s3p2,2S 

-58.60015 
-5.00161 
-0.48656 
-3.31582 
-0.16129 

Al 
3p\ 45 

-58.62686 
-5.02400 

-3.34678 
-0.25250 

9 E. R. Cohen, K. M. Crowe, J. W. M. DuMond, Fundamental Constants of Physics (Interscience Publishers, Inc., New York, 1957). 
10 Tables IX-XIII and Figs. 1-5 are deposited as Document No. 7583 with the American Documentation Institute, Auxiliary 

Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. These tables and figures contain some 
numerical tabulations and graphs of the orbital wave functions. 
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part of the orbital <Pi\a(r,$y<p) multiplied by r is denoted 
by Pi\(r). For each orbital of the states computed, the 
cusp condition is exactly satisfied so that it is not 
necessary to present the cusp values in the tables. In 
the numerical tabulations10 of the orbital wave functions 
only representative cases are included, although such 
tables were computed for all the states considered in 
this work. 

As to the accuracy of the results, it is believed that 
the values computed represent the Hartree-Fock values 
to six significant figures for total energies, and to three 
decimal places for the radial functions Pi\(r). 

We compared our results with other SCF calculations 
wherever possible; the comparisons are summarized 
in Table I. 

The ground state of Al+ was calculated by Biermann 
and Harting11 using a numerical procedure. Their 
orbitals disagree with ours in the second decimal place. 
Clearly, their numerical scheme must have been quite 
different from the customary Hartree-Fock method. 

Analytic (i.e., expansion method) Hartree-Fock wave 
functions for the ground state of Al were calculated by 
Watson and Freeman.12 These authors used approxima
tions based upon the methods of Nesbet13 for treating 
open shells. 

Some excited orbitals and the 3p orbital of Al were 
calculated by Biermann,14 and Biermann and Lubeck,15 

who used a numerical procedure. Comparing the 
tabulation, e.g., for 3p, 4s, and 3d, presented by these 
authors15 with ours, considerable differences were found. 
The squares of some transition integrals 

R*.b= [ Pix(r)rPjfi(r)dr, (9) 
Jo 

also yielded considerable discrepancies (see Table I). 
Analytic Hartree-Fock functions for the ground 

state of Cu+ were computed by Watson.16 We recal
culated Watson's results with our program, so that we 
obtained numerically tabulated functions to compare 
with ours. Generally, the orbitals agreed to about three 

11 L. Biermann and H. Harting, Z. Astrophys. 22, 81 (1943). 
12 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961). 
13 R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955); 

and subsequent articles. 
14 L. Biermann, Nachr. Akad. Wiss. Gottingen, Math. Physik. 

Kl. Ha, H.2, 116 (1946). 
15 L. Biermann and K. Lubeck, Z. Astrophys. 25, 325 (1948). 
16 For review and further reference see R. E. Watson, Phys. 

Rev. 118, 1036 (1960). 

TABLE VIII. Virial theorem. (Values of Ev/Ek) 

Atom 

or ion State Ep/Ek 

~Ai+ 3S2, lS -2.0001377 

Al 3s23p, *P -2.0001188 
3s*3d,2D -2.0001375 
3s24«r, *S -2.0001351 
3sHp,*P -2.0000817 
3s24/,2F -2.0001363 
3s3p2,*P -2.0001314 
3s3p2

y
2D -2.0001323 

3s3p2,2P -2.0001212 
3s3p2,2S -2.0001282 
3p\ 45 -2.0000611 

Cu+ 3dl0,1S -2.0000744 

~Cu 3d1Q4s, 2S -2.0000667 
3d104:p,2P -2.0000763 
3d94=s2, 2D -2.0000719 

decimal places, except for the 3d orbitals, which agreed 
to about two decimal places. 

Numerical Hartree-Fock procedure for Cu+ was 
carried out by Piper.17 His orbitals agree to about three 
decimal places with the orbitals of this work. 

Analytic Hartree-Fock functions for the excited state 
3dHs2, 2D of Cu were calculated by Watson.18 The 
author used approximation by Nesbet13 for treating 
open shells. 

Finally, our computed energies are compared with 
experimental energies in Table VI. Since total experi
mental energies are not available, we have compared 
energy differences between excited states and ground 
states. Since we neglected spin-orbit interaction in the 
calculations, we averaged the experimental energies as 
obtained from Moore's tables19 over the multiplet 
components. 
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